
 
 

 

8-bit   
Microcontrollers 
 
Application Note 
 
 
 

Rev. 8047A-AVR-02/08 

 
 

AVR1314: Using the XMEGA Real Time Counter 

Features 
• 16- bit RTC with programmable period and alarm. 
• Clock source options 

- Accurate Internal 32 kHz RC oscillator 
- Ultra Low Power Internal 32 kHz RC oscillator 
- External 32 kHz crystal oscillator. 

• Optional division of 32 kHz clock to 1kHz to save power  
• RTC clock prescaling factor between 1 and 1024. 

- Timer tick between 31us and 1 second 

1 Introduction 
In many embedded systems a real time counter is used to keep track of time. This 
can be to schedule application functions, like the duration of a washing cycle in a 
washing machine. It can also be used to wake up the MCU from low power modes 
on (ir)regular intervals The ability to use long time out periods reduces the battery 
power consumption in applications like e.g. thermostats, wireless applications and 
sensor/actuators. 

This application note covers the use of the 16-bit Real Time Counter (RTC) in the 
XMEGA™.  

  
 



 

2 AVR1314 
8047A-AVR-02/08 

2 Real time counter overview 
The XMEGA RTC is a 16-bit timer with programmable period time and a single 
compare channel.  

2.1 Registers 
The RTC count, period, and compare value are all 16-bit values. Since the data bus is 
only 8-bit wide, two registers are used to represent a 16-bit value. The high byte is 
referred to with an “H” suffix and low byte with an “L”.  Most C-compilers will handle 
the 16-bit access automatically when symbolic names of the 16-bit registers are used. 
It is also possible to access the high and low word individually. The 16-bit registers for 
the RTC are CNT[H:L], PER[H:L], and CMP[H:L]. 

2.2 Interrupts 
The RTC can generate two interrupts, an overflow interrupt, and one compare 
interrupt. The overflow interrupt will have a fixed frequency, as long as the period 
register (PER) is not changed: it can e.g. interrupt with 1 Hz interval – to update the 
clock digit on an LCD. The compare register (COMP) offers a way to set a variable 
timeout interrupt, without changing the period or reloading the timer’s count registers 
(CNT).    

2.3 Clock sources 
The RTC can be clocked from of three clock sources:  

• Internal 32 kHz Ultra-Low Power (ULP) RC oscillator 
• Internal 32kHz Calibrated RC oscillator (more accurate than the ULP RC, but 

draws more current).  
• An external 32.768kHz watch crystal oscillator (highly accurate).  
 

To reduce the power consumption the clock system can divide the 32 kHz clock 
sources to 1 kHz before providing it to the RTC module. An RTC clock cycle is 
therefore either 1ms or 31us. The RTC clock must be enabled in the clock system 
before the RTC can be used. Please refer to the application note AVR1003 and the 
datasheet for details on the clock system.  

The RTC module has an internal prescaling option. Prescaling factors up to 1024 are 
available. The prescaler factor is controlled by the CTRL register. 

The maximum timeout period and time resolution for the RTC is determined by the 
RTC clock frequency. If a fast clock is used this gives a fine timer resolution, but at 
the expense of fairly short timeout periods. If on the other hand the clock frequency is 
increased, the timeout period can be quite long, but with lower resolution. A few 
examples are given in the table below: 

 

 

 



 AVR1314
 

 3

8047A-AVR-02/08 

Table 2-1. RTC clock frequency, time resolution and timeout period 
Scaled RTC clock  Timer tick resolution Timeout period 

32.768 kHz 31 us 2 sec. 

1.024 kHz 1 ms 64 sec 

1 Hz 1 sec 18 hours 12 min 
 

This means that ultra low power battery applications can spend very long periods in 
sleep mode.  This reduces power consumption, as frequent wakeups only to update 
the real time variables are not needed. The MCU only wakes up when processing is 
required.  

2.4 Clock domains – synchronized and unsynchronized RTC registers 
Since the RTC is operating from a different clock than the CPU, it has another “clock 
domain” than the CPU. When the CPU and RTC exchange information across the 
clock domain boundary, synchronization between the two clock domains is required. 
The synchronization is hardware controlled. When data is transferred from CPU into 
RTC domain, the synchronization takes 3 clock cycles in the RTC clock domain. Note 
that, when referring clock cycles in the RTC clock domain, it is the unscaled clock 
input to the RTC module that it referred to. This is either 32 kHz or 1 kHz.  

The synchronization from RTC to CPU domain is 3 CPU cycles. This means that 
unless the CPU clock is very slow the duration of the synchronization in this direction 
is negligible. 

The four synchronized registers are CTRL, CNT, PER and COMP. Note that the PER 
register does not have a separate synchronizer; the synchronization of PER is 
triggered by synchronization of the CNT, CTRL or COMP registers. 

Synchronization from CPU into RTC domain is triggered when writing the high byte of 
the COUNT, COMP or PER registers. Writing the low bytes does not trigger 
synchronization. When writing new values it is therefore relevant to access the 
registers in correct order – write the low byte first and then the high byte. If the PER 
register is updated, one of the other registers must also be updated to synchronize 
PER value into RTC domain The mechanism is designed in this ways to ensure that 
corresponding PER and COMP values can be loaded in the same RTC cycle, while 
the RTC clock is running. 

To monitor if synchronization is completed the SYNCBUSY flag in the STATUS 
register can be inspected. The flag is set while synchronization is ongoing. Note that 
once the synchronization of a register is triggered, this register cannot be written 
again until the synchronization is completed. This applies to all four synchronized 
registers. Writing to one register does not block access to other registers.   

2.5 Special concerns for sleep mode 
Due to synchronization it is impossible to wake up from sleep mode by RTC interrupts 
more frequent than every 4 RTC clock cycles (unscaled clock). If for instance the 
compare period is set to 3 RTC timer ticks (and the clock is not prescaled in the RTC 
module), the synchronization will cause every second interrupt to be missed. If this 
interrupt is used to wake up the part from sleep this would be observed as if the 
wake-up from sleep occurs at half the expected frequency. This can be avoided by 
selecting an appropriate time base for the RTC with a higher frequency.  



 

4 AVR1314 
8047A-AVR-02/08 

2.6 Connecting the RTC to the Event System 
It is possible for the RTC to generate events on overflow and compare match – for 
details about the event system please refer to the datasheet and application note 
AVR1001. If combined with the Timer/Counters, this can be used to form a 24 hour 
timer: The RTC can generate an event every 60 seconds. The “minute-event” is used 
as clock source to a Timer Counter, which in turn generates overflow event to the 
event system after 60 minutes. The “hour-overflow” event is used at clock for another 
Timer Counter, which keeps tracks of the hours.  

Note that the event system is not operating in other sleep modes than Idle mode. Idle 
and Extended Power Save are however quite similar in power consumption when 
peripherals are not enabled.  

2.7 Operation of the RTC in debugging mode 
The RTC clock is blocked when breaking code execution in debugging mode. This 
ensures that interrupts are not generated continuously when single stepping. 
However, the timing of the RTC will be affected when single stepping the code as the 
RTC clock source is asynchronous to the CPU clock.  

3 Required methods of use 
The following subsections describe the recommended procedures for initialization and 
configuration of the RTC. All the procedures below assume that clock system is set 
up to provide a clock for the RTC module. 

3.1.1 Initialization (RTC not already running) 

1. Write period value by writing to the PER register. 
2. Write compare match and count values (COMP and CNT). 
3. Set interrupt level for compare match and overflow interrupt. 
4. Set clock prescaler selection in CTRL register. 

3.1.2 Re-initialization (RTC running) 

1. Stop RTC clock, by clearing prescaler. 
2. Wait for BSY flag to clear. 
3. Write period value by writing to the PER registers. 
4. Write compare match and count values (COMP and CNT). 
5. Set interrupt level for compare match and overflow interrupt. 
6. Set prescaler setting in CTRL register. 

3.1.3 Change RTC period 

1. Wait for SYNCBUSY flag to clear. 
2. Write period value by writing to the PER registers. 
3. Write either CNT or COMP register. 

3.1.4 Changing compare match or count value 

1. Wait for SYNCBUSY flag to clear. 
2. Write either CNT or COMP register. 



 AVR1314
 

 5

8047A-AVR-02/08 

3.1.5 Enter sleep mode 

1. Wait for SYNCBUSY flag to clear. 
2. Enter sleep mode. 

4 Driver Implementation 
This application note includes a source code package with a basic driver 
implemented in C.  

Note that this driver is written to be highly readable and as general example how to 
use the peripheral module. If using the driver in an application it may be desirable to 
copy relevant parts of the code to where it is needed, to reduce to number of function 
calls. This will both speed up the code and reduce the code footprint. 

4.1 Files 
The source code package consists of three files: 

• rtc_driver.c – driver source file 
• rtc_driver.h – driver header file 
• rtc_example.c – Example code using the driver 
 
For an overview of the available driver interface functions and their use, please refer 
to the source code documentation. 

4.2 Doxygen documentation 
All source code is prepared for automatic documentation generation using Doxygen. 
Doxygen is a tool for generating documentation from source code by analyzing the 
source code and using special keywords. For more details about Doxygen please visit 
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with 
the source code accompanying this application note, available from the readme.html 
file in the source code folder. 

  

http://www.doxygen.org/


 

 
 

Disclaimer 
Headquarters  International   

Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 

 

 Atmel Asia 
Room 1219 
Chinachem Golden Plaza 
77 Mody Road Tsimshatsui 
East Kowloon 
Hong Kong 
Tel: (852) 2721-9778 
Fax: (852) 2722-1369 

 
 
 
 
 
 
Product Contact 

 

Atmel Europe 
Le Krebs 
8, Rue Jean-Pierre Timbaud 
BP 309 
78054 Saint-Quentin-en-
Yvelines Cedex 
France 
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11 

 

Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 
 

 Web Site 
www.atmel.com 

 

Technical Support 
avr@atmel.com 

 

Sales Contact 
www.atmel.com/contacts 
 
 
 

 Literature Request 
www.atmel.com/literature 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND 
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED 
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, 
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the 
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any 
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 
 
 
 
© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or 
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 
 

 

8047A-AVR-02/08 


	1 Introduction
	2 Real time counter overview
	2.1 Registers
	2.2 Interrupts
	2.3 Clock sources
	2.4 Clock domains – synchronized and unsynchronized RTC registers
	2.5 Special concerns for sleep mode
	2.6 Connecting the RTC to the Event System
	2.7 Operation of the RTC in debugging mode

	3 Required methods of use
	3.1.1 Initialization (RTC not already running)
	3.1.2 Re-initialization (RTC running)
	3.1.3 Change RTC period
	3.1.4 Changing compare match or count value
	3.1.5 Enter sleep mode


	4 Driver Implementation
	4.1 Files
	4.2 Doxygen documentation


